uPAR为靶点的纳米递送系统在肿瘤诊断和治疗中的研究进展

翟秉涛, 田欢, 孙静, 张小飞, 邹俊波, 程江雪, 郭东艳

中国药学杂志 ›› 2022, Vol. 57 ›› Issue (23) : 1979-1990.

PDF(2539 KB)
PDF(2539 KB)
中国药学杂志 ›› 2022, Vol. 57 ›› Issue (23) : 1979-1990. DOI: 10.11669/cpj.2022.23.005
综述

uPAR为靶点的纳米递送系统在肿瘤诊断和治疗中的研究进展

  • 翟秉涛1, 田欢2, 孙静1, 张小飞1, 邹俊波1, 程江雪1, 郭东艳1*
作者信息 +

Research Progress of uPAR-Targeted Nano-Delivery Systems in Tumor Diagnosis and Treatment

  • ZHAI Bing-tao1, TIAN Huan2, SUN Jing1, ZHANG Xiao-fei1, ZOU Jun-bo1, CHENG Jiang-xue1, GUO Dong-yan1*
Author information +
文章历史 +

摘要

尿激酶型纤溶酶原激活物受体(urokinase-type plasminogen activator receptor,uPAR)与恶性肿瘤的侵袭和转移、血管生成、增殖与凋亡、多药耐药性以及预后密切相关,并且uPAR在健康组织中几乎不存在,但在多种恶性肿瘤中高表达的特性,使其成为肿瘤诊断和治疗的一个理想靶标。近年来,多种以uPAR为靶点的纳米药物递送系统显示出良好的肿瘤诊断和治疗潜力。笔者就以uPAR为靶点的纳米递送系统在肿瘤诊断和治疗中的研究进展做一综述,以期为后续相关研究的开展提供参考。

Abstract

Urokinase-type plasminogen activator receptor (uPAR) is closely related to the invasion and metastasis, angiogenesis, cell proliferation and apoptosis, multidrug resistance and prognosis of malignant tumors. uPAR is almost non-existent in healthy tissues, but it is highly expressed in a variety of malignant tumors, making it an ideal target for tumor diagnosis and treatment. In recent years, a variety of uPAR-targeted nano-drug delivery systems have shown good tumor diagnosis and treatment potential. It has been reviewed that the research progress of uPAR-targeted nano-delivery systems in tumor diagnosis and treatment.

关键词

尿激酶型纤溶酶原激活物受体 / 肿瘤诊断 / 靶向治疗 / 纳米药物递送 / 光动力疗法/光热疗法

Key words

urokinase-type plasminogen activator receptor / tumor diagnosis / targeted therapy / nano drug delivery / photodynamic therapy/photothermal therapy

引用本文

导出引用
翟秉涛, 田欢, 孙静, 张小飞, 邹俊波, 程江雪, 郭东艳. uPAR为靶点的纳米递送系统在肿瘤诊断和治疗中的研究进展[J]. 中国药学杂志, 2022, 57(23): 1979-1990 https://doi.org/10.11669/cpj.2022.23.005
ZHAI Bing-tao, TIAN Huan, SUN Jing, ZHANG Xiao-fei, ZOU Jun-bo, CHENG Jiang-xue, GUO Dong-yan. Research Progress of uPAR-Targeted Nano-Delivery Systems in Tumor Diagnosis and Treatment[J]. Chinese Pharmaceutical Journal, 2022, 57(23): 1979-1990 https://doi.org/10.11669/cpj.2022.23.005
中图分类号: R944    R696   

参考文献

[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
[2] WU J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application[J]. J Pers Med, 2021, 11(8):771. Doi: 10.3390/jpm11080771.
[3] SUBHAN M A, YALAMARTY S S K, FILIPCZAK N, et al. Recent advances in tumor targeting via EPR effect for cancer treatment[J]. J Pers Med, 2021, 11(6):571. Doi: 10.3390/jpm11060571.
[4] GAURAV I, WANG X, THAKUR A, et al. Peptide-conjugated nano delivery systems for therapy and diagnosis of cancer[J]. Pharmaceutics, 2021, 13(9):1433. Doi: 10.3390/pharmaceutics13091433.
[5] REDDY S, TATIPARTI K, SAU S, et al. Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors[J]. Drug Discov Today, 2021, 26(8):1944-1952.
[6] CHENG X, GAO J, DING Y, et al. Multi-functional liposome: A powerful theranostic nano-platform enhancing photodynamic therapy[J]. Adv Sci (Weinh), 2021, 8(16):e2100876. Doi: 10.1002/advs.202100876.
[7] JAIN P, KATHURIA H, MOMIN M. Clinical therapies and nano drug delivery systems for urinary bladder cancer[J]. Pharmacol Ther, 2021, 226: 107871. Doi: 10.1016/j.pharmthera.2021.107871.
[8] LI S A, NAPOLITANO F, MONTUORI N, et al. The urokinase receptor: A multifunctional receptor in cancer cell biology. Therapeutic implications[J]. Int J Mol Sci, 2021, 22(8):4111. Doi: 10.3390/ijms22084111.
[9] YUAN C, GUO Z, YU S, et al. Development of inhibitors for uPAR: Blocking the interaction of uPAR with its partners[J]. Drug Discov Today, 2021, 26(4):1076-1085.
[10] MAHMOOD N, MIHALCIOIU C, RABBANI S A. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR):Diagnostic, prognostic, and therapeutic applications[J]. Front Oncol, 2018, 8: 24. Doi: 10.3389/fonc.2018.00024.
[11] BAART V M, HOUVAST R D, DE GEUS-OEI L F, et al. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer[J]. Ejnmmi Res, 2020, 10(1):87. Doi: 10.1186/s13550-020-00673-7.
[12] MONTUORI N, PESAPANE A, ROSSI F W, et al. Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer[J]. Transl Med UniSa, 2016, 15: 15-21.
[13] MADUNIC J. The urokinasep activator system in human cancers: An overview of its prognostic and predictive role[J]. Thromb Haemost, 2018, 118(12):2020-2036.
[14] STOPPELLI M P, CORTI A, SOFFIENTINI A, et al. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes[J]. Proc Natl Acad Sci USA, 1985, 82(15):4939-4943.
[15] KUMAR A A, BUCKLEY B J, RANSON M. The Urokinase Plasminogen Activation System in Pancreatic Cancer: Prospective Diagnostic and Therapeutic Targets[J]. Biomolecules, 2022, 12(2):152. Doi: 10.3390/biom12020152.
[16] METRANGOLO V, PLOUG M, ENGELHOLM L H. The urokinase receptor (uPAR) as a "Trojan horse" in targeted cancer therapy: Challenges and opportunities[J]. Cancers (Basel), 2021, 13(21):5376. Doi: 10.3390/cancers13215376.
[17] ZHAI B T, TIAN H, SUN J, et al. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer[J]. J Transl Med, 2022, 20(1):135. Doi: 10.1186/s12967-022-03329-3.
[18] XU X, CAI Y, WEI Y, et al. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM)[J]. PLos One, 2014, 9(1):e85349. Doi: 10.1371/journal.pone.0085349.
[19] MAHMOOD N, ARAKELIAN A, KHAN H A, et al. uPAR antibody (huATN-658) and Zometa reduce breast cancer growth and skeletal lesions[J]. Bone Res, 2020, 8: 18. Doi: 10.1038/s41413-020-0094-3.
[20] LI Y, PARRY G, CHEN L, et al. An anti-urokinase plasminogen activator receptor (uPAR) antibody: crystal structure and binding epitope[J]. J Mol Biol, 2007, 365(4):1117-1129.
[21] DURISETI S, GOETZ D H, HOSTETTER D R, et al. Antagonistic anti-urokinase plasminogen activator receptor (uPAR) antibodies significantly inhibit uPAR-mediated cellular signaling and migration[J]. J Biol Chem, 2010, 285(35):26878-26888.
[22] ZHAO B, GANDHI S, YUAN C, et al. Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation[J]. J Mol Biol, 2015, 427(6 Pt B):1389-1403.
[23] MASUCCI M T, MINOPOLI M, Di CARLUCCIO G, et al. Therapeutic strategies targeting urokinase and its receptor in cancer[J]. Cancers (Basel), 2022, 14(3):498. Doi: 10.3390/cancers14030498.
[24] WANG L.Study on uPAR in the metastasis of ovarian cancer and anti-uPAR chimeric antigen receptor against ovarian cancer[D].Changchun:Jilin University,2020.
[25] HUAI Q, MAZAR A P, KUO A, et al. Structure of human urokinase plasminogen activator in complex with its receptor[J]. Science, 2006, 311(5761):656-659.
[26] WANG M, LÖWIK D W P M, MILLER A D, et al. Targeting the urokinase plasminogen activator receptor with synthetic self-assembly nanoparticles[J]. Bioconjug Chem, 2009, 20(1):32-40.
[27] PLOUG M, ØSTERGAARD S, GÅRDSVOLL H, et al. Peptide-derived antagonists of the urokinase receptor. affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell intravasation[J]. Biochemistry-US, 2001, 40(40):12157-12168.
[28] LLINAS P, LE DU MH, GÅRDSVOLL H, et al. Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide[J]. Embo J, 2005, 24(9):1655-1663.
[29] LIU H X, ZHAO F, MA Y L, et al. Research progress of nanometer contrast agent in tumor diagnosis[J]. Chin Pharm J(中国药学杂志), 2021, 56(18):1466-1475.
[30] YANG Y, MENG J, WEN T, et al. The preparation of uPAR-targeted MR probe and its targetability to breast cancer cells[J]. Chin J Biomedl Eng(中国生物医学工程学报), 2018, 37(4):481-488.
[31] SUN C, GRADZIELSKI M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors[J]. Adv Colloid Interface Sci, 2022, 300: 102579. Doi: 10.1016/j.cis.2021.102579.
[32] YAMINI S, GUNASEELAN M, GANGADHARAN A, et al. Upconversion, MRI imaging and optical trapping studies of silver nanoparticle decorated multifunctional NaGdF4:Yb,Er nanocomposite[J]. Nanotechnology, 2021, 33(8). Doi: 10.1088/1361-6528/ac37e4.
[33] CAO K.uPAR-targeted upconversion nanoparticles for in vivo imaging of pancreatic cancer[D].Shanghai: The Second Military Medical University,2015.
[34] CAO K, RONG T J, WEI H M, et al. Magnetic/upconversion fluorescent NaGdF4: Yb, Er nanoparticle-based dual-modal molecular probes for in-vivo imaging of pancreatic cancer[J]. DiagnImag Intervent Radiol(影像诊断与介入放射学), 2016, 25(2):91-97.
[35] LI S, CHENG D, HE L, et al. Recent progresses in NIR-Ⅰ/Ⅱ fluorescence imaging for surgical navigation[J]. Front Bioeng Biotechnol, 2021, 9: 768698. Doi: 10.3389/fbioe.2021.768698.
[36] LI H, WANG P, GONG W, et al. Dendron-grafted polylysine-based dual-modal nanoprobe for ultra-early diagnosis of pancreatic precancerosis via targeting a urokinase-type plasminogen activator receptor[J]. Adv Healthc Mater, 2018, 7(5). Doi: 10.1002/adhm.201700912.
[37] YANG L, MAO H, CAO Z, et al. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles[J]. Gastroenterology, 2009, 136(5):1514-1525.
[38] YANG L, SAJJA H K, CAO Z, et al. uPAR-targeted optical imaging contrasts as theranostic agents for tumor margin detection[J]. Theranostics, 2013, 4(1):106-118.
[39] DU J, YANG S, QIAO Y, et al. Recent progress in near-infrared photoacoustic imaging[J]. Biosens Bioelectron, 2021, 191: 113478. Doi: 10.1016/j.bios.2021.113478.
[40] XI L, GROBMYER S R, ZHOU G, et al. Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents[J]. J Biophotonics, 2014, 7(6):401-409.
[41] ZHOU M H, LIAO C Y, REN Z Y, et al. Bioimaging technologies based on surface-enhanced Raman spectroscopy and their applications[J]. Chin Optics(中国光学), 2013, 6(5):633-642.
[42] CHEN W, XU S, WANG X, et al. Single cell detection using intracellularly-grown-Au-nanoparticle based surface-enhanced Raman scattering spectroscopy for nasopharyngeal cell line classification[J]. Anal Methods, 2021, 13(28):3147-3153.
[43] LI L, LIAO M, CHEN Y, et al. Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells[J]. J Mater Chem B, 2019, 7(5):815-822.
[44] YU S, LI L, LYU X, et al. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit[J]. Sci Rep, 2016, 6: 20399. Doi: 10.1038/srep20399.
[45] KRISHNAN S K, SINGH E, SINGH P, et al. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors[J]. Rsc Adv, 2019, 9(16): 8778-8881.
[46] ROBERTS A, TRIPATHI P P, GANDHI S. Graphene nanosheets as an electric mediator for ultrafast sensing of urokinase plasminogen activator receptor-A biomarker of cancer[J]. Biosens Bioelectron, 2019, 141: 111398. Doi: 10.1016/j.bios.2019.111398.
[47] YANG L, CAO Z, SAJJA H K, et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging[J]. J Biomed Nanotechnol, 2008, 4(4):439-449.
[48] BELFIORE L, SAUNDERS D N, RANSON M, et al. N-alkylisatin-loaded liposomes target the urokinase plasminogen activator system in breast cancer[J]. Pharmaceutics, 2020, 12(7):641.
[49] ZHAI B, CHEN P, WANG W, et al. An ATF24 peptide-functionalized β-elemene-nanostructured lipid carrier combined with cisplatin for bladder cancer treatment[J]. Cancer Biol Med, 2020, 17(3):676-692.
[50] PARK J Y, SHIN Y, WON W R, et al. Development of AE147 peptide-conjugated nanocarriers for targeting uPAR-overexpressing cancer cells[J]. Int J Nanomed, 2021, 16: 5437-5449.
[51] ZHU L, STALEY C, KOOBY D, et al. Current status of biomarker and targeted nanoparticle development: The precision oncology approach for pancreatic cancer therapy[J]. Cancer Lett, 2017, 388: 139-148.
[52] LEE G Y, QIAN W P, WANG L, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer[J]. ACS Nano, 2013, 7(3):2078-2089.
[53] KIM J, SHIM M K, CHO Y J, et al. The safe and effective intraperitoneal chemotherapy with cathepsin B-specific doxorubicin prodrug nanoparticles in ovarian cancer with peritoneal carcinomatosis[J]. Biomaterials, 2021, 279: 121189. Doi: 10.1016/j.biomaterials.2021.121189.
[54] GAO N, BOZEMAN E N, QIAN W, et al. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery[J]. Theranostics, 2017, 7(6):1689-1704.
[55] BELFIORE L, SAUNDERS D N, RANSON M, et al. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities[J]. J Controlled Release, 2018, 277: 1-13.
[56] SEIDI K, NEUBAUER H A, MORIGGL R, et al. Tumor target amplification: Implications for nano drug delivery systems[J]. J Controlled Release, 2018, 275: 142-161.
[57] AHMED M S U, SALAM A B, YATES C, et al. Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer[J]. Int J Nanomed, 2017, 12: 6973-6984.
[58] MILLER-KLEINHENZ J, GUO X, QIAN W, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer[J]. Biomaterials, 2018, 152: 47-62.
[59] GHOSH N, HOSSAIN U, MANDAL A, et al. The Wnt signaling pathway: a potential therapeutic target against cancer[J]. Ann Ny Acad Sci, 2019, 1443(1):54-74.
[60] ASUTHKAR S, GONDI C S, NALLA A K, et al. Urokinase-type plasminogen activator receptor (uPAR)-mediated regulation of WNT/beta-catenin signaling is enhanced in irradiated medulloblastoma cells[J]. J Biol Chem, 2012, 287(24):20576-20589.
[61] JIANG W X, ZHANG H Q, DING Y, et al. Research progress in nano-drug delivery systems for antitumor multi-drug combinational application[J]. Acta Pharm Sin(药学学报), 2022, 57(1):1-12,275.
[62] HONG Y, CHE S, HUI B, et al. Lung cancer therapy using doxorubicin and curcumin combination: Targeted prodrug based, pH sensitive nanomedicine[J]. Biomed Pharmacother, 2019, 112: 108614. Doi: 10.1016/j.biopha.2019.108614.
[63] JIA F, DU C C, MAO T L, et al. Progress in the use of nanocarriers for co-delivery of genes and chemotherapeutic agents for cancer therapy[J]. Mater Rep(材料导报), 2022(17):1-18.
[64] ZHOU Z, LIU X, ZHU D, et al. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration[J]. Adv Drug Deliv Rev, 2017, 115: 115-154.
[65] MA L, REINHARDT F, PAN E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model[J]. Nat Biotechnol, 2010, 28(4):341-347.
[66] ZHANG T, WU Y, YANG D, et al. Preparation, characterization, and in vitro tumor-suppressive effect of anti-miR-21-equipped RNA nanoparticles[J]. Biochem Biophys Res Commun, 2021, 558: 107-113.
[67] DEVULAPALLY R, SEKAR N M, SEKAR T V, et al. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy[J]. ACS Nano, 2015, 9(3):2290-2302.
[68] CHOI Y S, PARK J H, LEE J H, et al. Association between impairment of DNA double strand break repair and decreased ovarian reserve in patients with endometriosis[J]. Front Endocrinol (Lausanne), 2018, 9: 772. Doi: 10.3389/fendo.2018.00772.
[69] DONG Y, LIAO H, FU H, et al. pH-sensitive shell-core platform block DNA repair pathway to amplify irreversible DNA damage of triple negative breast cancer[J]. ACS Appl Mater Interfaces, 2019, 11(42):38417-38428.
[70] YANG M, CAO S, SUN X, et al. Self-assembled naphthalimide conjugated porphyrin nanomaterials with D-A structure for PDT/PTT synergistic therapy[J]. Bioconjug Chem, 2020, 31(3):663-672.
[71] YANG Y, LIU X, MA W, et al. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy[J]. Biomaterials, 2021, 265: 120456. Doi: 10.1016/j.biomaterials.2020.120456.
[72] ZHAO L, ZHANG X, WANG X, et al. Recent advances in selective photothermal therapy of tumor[J]. J Nanobiotechnol, 2021, 19(1):335. Doi: 10.1186/s12951-021-01080-3.
[73] GUNAYDIN G, GEDIK M E, AYAN S. Photodynamic therapy-current limitations and novel approaches[J]. Front Chem, 2021, 9: 691697. Doi: 10.3389/fchem.2021.691697.
[74] ABRAHAMSE H, HAMBLIN M R. New photosensitizers for photodynamic therapy[J]. Biochem J, 2016, 473(4):347-364.
[75] LU X L, ZHANG R, YANG P X, et al. Research progress on nanocarrier-loaded zinc phthalocyanine and its derivatives for photodynamic anticancer[J]. Chem Res Appl(化学研究与应用), 2020, 32(3):341-350.
[76] HOOGENBOEZEM E N, DUVALL C L. Harnessing albumin as a carrier for cancer therapies[J]. Adv Drug Deliv Rev, 2018, 130: 73-89.
[77] ZHOU X, ZHENG K, LI R, et al. A drug carrier targeting murine uPAR for photodynamic therapy and tumor imaging[J]. Acta Biomater, 2015, 23: 116-126.
[78] LI S, YUAN C, CHEN J, et al. Nanoparticle binding to urokinase receptor on cancer cell surface triggers nanoparticle disintegration and cargo release[J]. Theranostics., 2019, 9(3):884-899.
[79] KELLY C, MAJEWSKA P, IOANNIDIS S, et al. Estimating progression-free survival in patients with glioblastoma using routinely collected data[J]. J Neurooncol, 2017, 135(3):621-627.
[80] CHENG Y, MORSHED R A, AUFFINGER B, et al. Multifunctional nanoparticles for brain tumor imaging and therapy[J]. Adv Drug Deliv Rev, 2014, 66: 42-57.
[81] ZHAO M, DING J, MAO Q, et al. A novel αvβ3 integrin-targeted NIR-II nanoprobe for multimodal imaging-guided photothermal therapy of tumors in vivo[J]. Nanoscale, 2020, 12(13):6953-6958.
[82] LI Z, WANG C, CHEN J, et al. uPAR targeted phototheranostic metal-organic framework nanoprobes for MR/NIR-II imaging-guided therapy and surgical resection of glioblastoma[J]. Mater Design, 2021, 198: 109386. Doi:10.1016/j.matdes.2020.109386.
[83] HU Y, CHI C, WANG S, et al. A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer[J]. Adv Mater, 2017, 29(33). Doi: 10.1002/adma.201700448.
[84] ZHENG D W, LI B, LI C X, et al. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting[J]. ACS Nano, 2016, 10(9):8715-8722.
[85] DAI Y, DU W, GAO D, et al. Near-infrared-Ⅱ light excitation thermosensitive liposomes for photoacoustic imaging-guided enhanced photothermal-chemo synergistic tumor therapy[J]. Biomater Sci, 2022, 10(2):435-443.
[86] LI H, WANG P, DENG Y, et al. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma[J]. Biomaterials, 2017, 139: 30-38.
[87] CARNIELLI C M, MACEDO C C S, DE ROSSI T, et al. Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer[J]. Nat Commun, 2018, 9(1):3598. Doi: 10.1038/s41467-018-05696-2.
[88] GVETADZE S R, XIONG P, LV M, et al. Contrast-enhanced ultrasound mapping of sentinel lymph nodes in oral tongue cancer-a pilot study[J]. Dentomaxillofac Radiol, 2017, 46(3):20160345. Doi: 10.1259/dmfr.20160345.
[89] YANG B, CHEN Y, SHI J. Reactive oxygen species (ROS)-based nanomedicine[J]. Chem Rev, 2019, 119(8):4881-4985.
[90] ZUO J, HUO M, WANG L, et al. Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma[J]. J Mater Chem B, 2020. Doi: 10.1039/d0tb01089h.
[91] YOU Y. Phosphorescence bioimaging using cyclometalated Ir(III) complexes[J]. Curr Opin Chem Biol, 2013, 17(4):699-707.
[92] YU S, HUANG G, YUAN R, et al. A uPAR targeted nanoplatform with an NIR laser-responsive drug release property for tri-modal imaging and synergistic photothermal-chemotherapy of triple-negative breast cancer[J]. Biomater Sci, 2020, 8(2):720-738.
[93] HU X, MANDIKA C, HE L, et al. Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis[J]. ACS Appl Mater Interfaces, 2019, 11(43):39688-39705.
[94] MERTENS H D T, KJAERGAARD M, MYSLING S, et al. A flexible multidomain structure drives the function of the urokinase-type plasminogen activator receptor (uPAR)[J]. J Biol Chem, 2012, 287(41):34304-34315.
[95] LIN L, GÅRDSVOLL H, HUAI Q, et al. Structure-based engineering of species selectivity in the interaction between urokinase and its receptor: implication for preclinical cancer therapy[J]. J Biol Chem, 2010, 285(14):10982-10992.
[96] WEI C, MÖLLER C C, ALTINTAS M M, et al. Modification of kidney barrier function by the urokinase receptor[J]. Nat Med, 2008, 14(1):55-63.
[97] GU N. Creation and clinical translation of antitumor targeted nanomedicines[J]. Prog Pharm Sci(药学进展), 2017, 41(11):801-803.
[98] WANG Z H, LIU Y L. Progress and prospect in the clinical translation of cancer nanomedicine[J]. Acta Pharm Sin(药学学报), 2022, 57(1):134-141,277.
[99] LIU J, TANG H, MI P, et al. Research progress on clinical translation of antitumor nanomedicines[J]. Sci Technol Rev(科技导报), 2018, 36(22):118-126.

基金

国家自然科学基金项目资助(82204935);陕西省自然科学基础研究计划项目资助(2022JQ-917,2022JQ-932);陕西省教育厅重点科研计划项目资助(21JS009);陕西中医药大学学科创新团队项目资助(2019-YL11);西安市中医药管理局项目资助(SZY202103);西安市卫生健康委员会科研项目资助(2022yb01);陕西中医药大学校级科研课题资助(2021GP04)
PDF(2539 KB)

Accesses

Citation

Detail

段落导航
相关文章

/